An Improved Synthesis of α -Phenylseleno Arsonium Ylides

Gui Sheng DENG, Zhi Zhen HUANG, Xian HUANG*

Department of Chemistry, Zhejiang University (Campus Xixi), 34 Tianmushan Lu, Hangzhou 310028

Abstract: α -Seleno arsonium ylides 5 have been synthesized through the reaction of α -unfunctionalized arsonium ylides 4 with almost equimolar phenylselenenyl iodide 2.

Keyword: Synthesis, ylide, α -seleno arsonium ylide.

The first α -seleno arsonium vlides have been synthesized bv phenylselenenylation-transylidation^{1, 2}. It has been found that they can converse into α -phenylseleno- α , β -unsaturated compounds through their Wittig-type reactions in good yield^{1, 2}. Therefore these Wittig reagents become useful intermediate in organic synthesis. α -Seleno arsonium ylides were prepared by the treatment of α -unfunctionalized arsonium ylides with phenylselenenyl iodide to afford an equimolar mixture of the desired α -seleno arsonium vlide and arsonium salt (Scheme A)^{1, 2}. Therefore at least half of the starting arsorane was conversed to undesired arsonium salt.

$$\begin{array}{c} Ph_{3} As = CHCO_{2} R + PhSel \longrightarrow \left[Ph_{3} \dot{A}s = C & SePh \\ Ph_{3} \dot{A}s = C & CO_{2} R \end{array} \right]^{-1} \\ \xrightarrow{Ph_{3} As = CHCO_{2} R} Ph_{3} As = C & SePh \\ \xrightarrow{CO_{2} R} Ph_{3} \dot{A}s = C & Ph_{3} \dot{A}s CH_{2} CO_{2} R \end{array}$$

We have found that α -seleno arsonium ylides **3** can be obtained in excellent yield when α -unfunctionalized arsonium ylides **1** are treated with almost equimolar phenylselenenyl iodide **2** in the presence of weak base such as potassium carbonate, sodium acetate and triethylamine (**Scheme B**). The results are list in **Table 1**.

Scheme B $Ph_3As=CHCOPh + PhSel \xrightarrow{base} Ph_3As=C \xrightarrow{SePh} COPh$ 1 2 3

Among them, triethylamine is better. So other unfunctionalized arsonium ylides 4 are treated with almost equimolar phenylselenenyl iodide 2 in the presence of triethylamine to provide α -seleno arsonium ylides 5 in good yield as well (Scheme C). The results are compiled in Table 2.

Table 1. Yield of α -Seleno Arsonium Ylide 3 in the Presence of Base

Entry	Base	Yield (%)
3a	CH ₃ COONa	86
3b	K_2CO_3	80
3c	Et ₃ N	90

The ratio of 1, 2 and base is equal to 1:0.85:1.1.

	Scheme C	
Ph ₃ As=CH COR	+ PhSel <u>Et₃N</u>	SePh Ph₃As=C, CO R
4	2	5
a. R = OCH ₃ c. R = Ph e. R = <i>p</i> _BrC ₆ H ₄	b. $R = CH_3$ d. $R = p$ -ClC ₆ H ₄	

Table 2. An improved synthesis of α -seleno arsonium ylids 5

Entry ^a	R	mp. (°C)	Yield (%)
5a	OCH ₃	202-204 ^b	80
5b	CH_3	180 (decompd.) ^c	83
5c	Ph	180 (decompd.) ^c 197-199 ^d	90
5d	$p-ClC_6H_4$	180-182 ^e	90
5e	p-ClC ₆ H ₄ p-BrC ₆ H ₄	173-176 ^e	89

a) The ratio of **4**, **2** and Et₃N is equal to 1:0.85:1.1. b) lit¹. 203-205 °C. c) lit². 180 °C (decompd.). d) lit². 198-200 °C. e) All compounds were confirmed by ¹H NMR, IR, MS and elemental analysis.

Typical procedure for the synthesis of compound **5a**. To a stirred suspension of methoxycarbonylmethylene triphenylarsorane (**4a**) (0.378 g, 1 mmol) and triethylamine (0.11 g, 1.1 mmol) in MeOH-Et₂O (0.6 mml, v/v=1:1) was added dropwise the solution of phenylselenenyl iodide **2** (0.85 mmol) in MeOH-Et₂O (2.8 mml, v/v=1:1) at 0 °C for 14 hrs. The mixture was stirred again for 6 hrs. After the solvent in the mixture was evaporated under reduced pressure, the residue was washed with water, then with ether, finally recrystallized from ethanol to provide the compound **5a** in 80% yield, mp. 202-204 °C (lit¹. 203-205 °C), ¹H NMR (60 MHz, CDCl₃, TMS) δ ppm: 7.70-7.09 (20H, m), 3.41 (3H, s). IR (KBr) cm⁻¹: 1600(s), 1445(vs), 1300(s), 750(s), 695(s).

Acknowledgment

Project 29502006 was supported by the National Natural Science Foundation of China.

References

Z. Z. Huang, X. Huang, Y. Z. Huang, J. Organomet. Chem., 1995, 490, C23-C26.
Z. Z. Huang, X. Huang, Y. Z. Huang, J. Chem. Soc. Perkin Trans. 1, 1995, 95.

Received 10 January 2000